Skip to main content
Log in

Generation and collapse of bubbles in lead silicate glass

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Presence of bubbles affects quality of the lead silicate glass (LSG) samples. This paper presents the most recent results obtained on formation and collapse of bubbles in LSG melts. Main sources of the bubbles are dissolved gases and redox reactions. A foamy layer full of bubbles rapidly forms at top of the molten phase. Effect of viscosity and density of the melt on content and ascension rate of the bubbles are investigated. Number and mean diameter of the bubbles and thickness of the top bubbly layer are calculated from gas volume measurements and image analysis via J software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pilon, L., Fedorov, A.G., Ramkrishna, D., and Viskanta, R., Bubble transport in three-dimensional laminar gravity-driven flowMathematical formulation, J. Non-Cryst. Solids, 2004, vol. 336, no. 2, pp. 71–83.

    Article  Google Scholar 

  2. Pilon, L. and Viskanta, R., Bubble transport in three-dimensional laminar gravity-driven flow—Numerical results, J. Non-Cryst. Solids, 2004, vol. 336, no. 2, pp. 84–95.

    Article  Google Scholar 

  3. Nemec, L. and Tonarova, V., Behavior of bubbles in glass melts under effect of the gravitational and centrifugal fields, Ceram.-Silic., 2005, vol. 49, no. 3, pp. 162–169.

    Google Scholar 

  4. Nemec, L., Jebava, M., and Cincibusova, P., The removal of bubbles from glass melts in horizontal or vertical channels with different glass flow patterns, Ceram.-Silic., 2006, vol. 50, no. 3, pp. 140–152.

    Google Scholar 

  5. Nemec, L., Refining in the glassmelting process, J. Am. Ceram. Soc., 1977, vol. 60, nos. 910, pp. 436–440.

    Article  Google Scholar 

  6. Nemec, L. and Ullrich, J., Calculations of interactions of gas bubbles with glass liquids containing sulfates, J. Non-Cryst. Solids, 1998, vol. 238, nos. 12, pp. 98–114.

    Article  Google Scholar 

  7. Sycheva, G.A., Formation of the bubble structure in the 26Li2O · 74SiO2 glass, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 267–273.

    Article  Google Scholar 

  8. Kwak, H.-Y. and Kang, K.-M., Gaseous bubble nucleation under shear flow, Int. J. Heat Mass Transfer, 2009, vol. 52, nos. 2122, pp. 4929–4937.

    Article  Google Scholar 

  9. Lensky, N.G., Niebo, R.W., Holloway, J.R., Lyakhovsky, V., and Navon, O., Bubble nucleation as a trigger for xenolith entrapment in mantle melts, Earth Planet. Sci. Lett., 2006, vol. 245, nos. 12, pp. 278–288.

    Article  Google Scholar 

  10. Jucha, R.B., Powers, D., Mcneil, T., Subramanian, R.S., and Cole, R., Bubble rise in glass-melts, J. Am. Ceram. Soc., 1982, vol. 65, no. 6, pp. 289–292.

    Article  Google Scholar 

  11. Kentish, S., Lee, J., Davidson, M., and Ashokkumar, M., The dissolution of a stationary spherical bubble beneath a flat plate, Chem. Eng. Sci., 2006, vol. 61, no. 23, pp. 7697–7705.

    Article  Google Scholar 

  12. Lillico, D.A., Babchin, A.J., Jossy, W.E., Sawatzky, R.P., and Yuan, J.Y., Gas bubble nucleation kinetics in a live heavy oil, Colloids Surf., A, 2001, vol. 192, pp. 25–38.

    Article  Google Scholar 

  13. Sycheva, G.A., Influence of the presence of bubbles on the parameters of crystal nucleation in the 26Li2O · 74SiO2 glass, Glass Phys. Chem., 2009, vol. 35, no. 6, pp. 602–612.

    Article  Google Scholar 

  14. Fedorov, A.G. and Pilon, L., Glass foams: Formation, transport properties, and heat, mass, and radiation transfer, J. Non-Cryst. Solids, 2002, vol. 311, no. 2, pp. 154–173.

    Article  Google Scholar 

  15. Kim, D.S., Dutton, B.C., Hrma, P.R., and Pilon, L., Effect of furnace atmosphere on E-glass foaming, J. Non-Cryst. Solids, 2006, vol. 352, nos. 50–51, pp. 5287–5295.

    Article  Google Scholar 

  16. Hrma, P., Effect of heating rate on glass foaming: Transition to bulk foam, J. Non-Cryst. Solids, 2009, vol. 355, nos. 45, pp. 257–263.

    Article  Google Scholar 

  17. Image J software: rsbweb.nih.gov/ij/.

  18. Singer, F. and Singer, S.S., Industrial Ceramics, London: Chapman and Hall, 1971, p. 342.

    Google Scholar 

  19. Shelby, J.E., Introduction to Glass Science and Technology, London: Royal Society of Chemistry, 2005, 2nd ed., p. 150.

    Google Scholar 

  20. Steger, W.E., Landmesser, H., Boettcher, U., and Schubert, E.J., Infrared spectra of amorphous oxides, Mol. J. Struct., 1990, vol. 217, no. 1, pp. 341–346.

    Article  Google Scholar 

  21. Bray, P.J., Geissberger, A.E., Bucholtz, F., and Harris, I.A., Glass structure, J. Non-Cryst. Solids, 1982, vol. 52, nos. 1–3, pp. 4566.

    Google Scholar 

  22. Volf, M.B., Chemical Approach to Glass, Glass Science, and Technology, Amsterdam, The Netherlands: Elsevier, 1984, vol. 7, p. 443.

    Google Scholar 

  23. Rao, B.G., Sundar, H.G.K., and Rao, K.J., Investigations of glasses in the system PbOPbF2, J. Chem. Soc., Faraday Trans. 1, 1984, vol. 80, no. 12, pp. 3491–3501.

    Article  Google Scholar 

  24. Salagram, M., Krishna Prasad, V., and Subrahmanyam, K., IR and optical study of PbO(2PbO · PbO2) glass containing a small amount of silica, J. Alloys Compd., 2002, vol. 335, no. 1, pp. 228–232.

    Article  Google Scholar 

  25. Norton, F.J., Permeation of gaseous oxygen through vitreous silica, Nature (London), 1961, vol. 191, p. 701.

    Article  Google Scholar 

  26. Harper, C.A., Handbook of Ceramics, Glasses, and Diamonds, New York: McGraw-Hill, 2002, pp. 5.42–5.43.

    Google Scholar 

  27. Shelby, J.E., Introduction to Glass Science and Technology, London: Royal Society of Chemistry, 2005, 2nd ed., pp. 124–126.

    Google Scholar 

  28. Hornyak, E.J. and Weinberg, M.C., Velocity of a freely rising gas bubble in a sodalime silicate glass melt, J. Am. Ceram. Soc., 1984, vol. 67, no. 11, pp. c244–c246.

    Article  Google Scholar 

  29. Li, K.-W.K. and Schneider, A., Rise velocities of large bubbles in viscous Newtonian liquids, J. Am. Ceram. Soc., 1995, vol. 76, no. 1, pp. 241–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sadrnezhaad.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, R.A., Sadrnezhaad, S.K. Generation and collapse of bubbles in lead silicate glass. Glass Phys Chem 41, 307–315 (2015). https://doi.org/10.1134/S1087659615030128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659615030128

Keywords

Navigation